Stevart p: $1150 \quad$ \# 38

What is $\oint_{c} \vec{F} \cdot d \vec{r} ?$

First though: this problem looks impossible, b/e we don't know explicit description of C.
Secund thought. Maybe that's be it dresn't matter;
ie. maybe \vec{F} is connernaticu

$$
\left(\infty \quad \phi_{c} \vec{F} \cdot d \vec{r}=0\right) .
$$

In line in this second Aloinght, ne compute $Q_{x}-P_{y}$ and we find

$$
Q_{x}-P_{y}=0 \quad \text { (check!!) }
$$

 can ne apply Green's. Thu to $f_{c} \vec{F}$ dr $b / c \quad \vec{F}$: not defined e($(0,0)$ endorsed in C.

I claim that $\oint_{C} \vec{F} \cdot d \vec{r}=\oint_{D} \vec{F} \cdot d \vec{r}$
(Refer to Example 5 in 16.4 and the discussion preceding.

Appliy Green's Thim to R_{i} :

$$
\begin{aligned}
& \oint_{c_{1}} \vec{F} \cdot d \vec{r}+\oint_{L_{1}} \vec{F} d \vec{r}+\oint_{-D_{1}} \vec{F} d \vec{r}+\oint_{L_{L}} \vec{F} d \vec{r} \\
& =\iint_{R_{1}}\left(Q_{D_{x}}-P_{y}\right) d A=0
\end{aligned}
$$

To R_{i} :

$$
\begin{aligned}
& \oint_{C_{2}} \vec{F} d \vec{r}+\int_{-L_{2}} \vec{F} d \vec{r}+\oint_{-D_{2}} \vec{F} d \vec{r}+\oint_{-L_{1}} \vec{F} \cdot d \vec{r} \\
& \quad \int_{R_{2}}\left(Q_{x}-P_{j}\right) d A=0
\end{aligned}
$$

Ald:

$$
\oint_{C} \vec{F}_{\cdot} d r+\oint_{-D} \vec{F} d r=0
$$

$$
\oint_{c} \vec{F} \cdot d \vec{r}=\oint_{D} \vec{F} \cdot d \vec{r} \text { as desired }
$$

If yon're comfortable it it altematively apply Greer's

"Positively oriented bourcang of $R "$

$$
C+(-D)
$$

by RHR
so Geen's Thm gives $\oint_{c} \vec{F} \cdot d r+\oint_{-D} F \cdot d r=\iint_{R}\left(Q_{P} P_{1} \mid d A\right.$
as lefore.
Now ne just reed to compute

$$
\begin{aligned}
& \oint_{D}\left\langle\frac{2 x^{3}+2 x y^{2}-2 y}{x^{2}+y^{2}}, \frac{2 y^{3}+2 x^{2} y+2 x}{x^{2}+y^{2}}\right\rangle \cdot d r \\
& \int^{2} \\
& x^{2}+y^{2}=1 \\
& \text { ccw } \\
& =\oint_{D}\left\langle 2 x^{3}+2 x y^{2}-2 y, 2 y^{3}+2 x^{2} y+2 x\right\rangle \cdot d r
\end{aligned}
$$

I can use Green's Thm on thrs now!

$$
=\iint_{x^{2}+y^{2} \leqslant 1}((4 x y+2)-(4 x y-2)) d x d y
$$

$$
=\iint_{x^{2}+y^{2} \leq 1} 4 \text { dxdy }=4 \text { Area } 0 x=4 \pi
$$

Loose interpretation of "curl" is by RHR:
 $\nabla \times F$ points out
of the prize

Another interpretation: imagine \vec{p} describes water flow, and let an abject float on the water surface. "Cur IF" measures how the object oping.

How des ∇_{x} relate to Clairants Thu?
Claicants Thm: $f(x, y, z)$ a "nice" fri... then

$$
f_{x y}=f_{y x}, \quad f_{x z}=f_{z x}: f_{y z}=f_{z y}
$$

Corollain:" $f(x, y, z)$ "nice". then $\nabla x(\nabla f)=0$. $p f \quad \nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$

$$
\begin{aligned}
& \nabla \times(\nabla f)=\operatorname{det}\left[\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
f_{x} & f_{y} & f_{z}
\end{array}\right] \\
&=\left\langle f_{z y}-f_{y z}, f_{x z}-f_{z x}, f_{y x} f_{x y}\right\rangle \\
&\left.=\left\langle 0, \partial_{i}\right\rangle\right\rangle \text { by Cairants Amm, } \quad
\end{aligned}
$$

Affemative writig : $\nabla f=\langle P, Q, R\rangle$

$$
f_{x}^{\prime \prime} f_{y}^{\prime \prime} f_{z}
$$

Clairant's says $Q_{x}-P_{y}=0$ etc...

$$
f_{y x}^{\prime \prime} f_{x y}^{\prime}
$$

